42 research outputs found

    Keep it fresh: Reducing the age of information in V2X networks

    Get PDF
    The freshness of information is of the utmost importance in many contexts, including V2X networks and applications. One measure of this metric is the Age of Information (AoI), a notion recently introduced and explored by several authors, often with specific reference to vehicular networks. With this work, we explore the possibility of reducing the AoI of multi-hop information flooding in V2X networks exploiting the properties of the Eigenvector Centrality (EvC) of nodes in the topology, and the possibility that each node computes it exploiting only local information and very easy computations, so that each node can autonomously adapt its own networking parameters to redistribute information more efficiently. Starting from theoretical bounds and results, we explore how they hold in urban-constrained topologies and compare the AoI achieved exploiting EvC with the AoI achievable without this optimization of the nodes' behavior. Simulation results show a meaningful improvement without using additional resources and without the need of any global coordination

    Infective flooding in low-duty-cycle networks, properties and bounds

    Get PDF
    Flooding information is an important function in many networking applications. In some networks, as wireless sensor networks or some ad-hoc networks it is so essential as to dominate the performance of the entire system. Exploiting some recent results based on the distributed computation of the eigenvector centrality of nodes in the network graph and classical dynamic diffusion models on graphs, this paper derives a novel theoretical framework for efficient resource allocation to flood information in mesh networks with low duty-cycling without the need to build a distribution tree or any other distribution overlay. Furthermore, the method requires only local computations based on each node neighborhood. The model provides lower and upper stochastic bounds on the flooding delay averages on all possible sources with high probability. We show that the lower bound is very close to the theoretical optimum. A simulation-based implementation allows the study of specific topologies and graph models as well as scheduling heuristics and packet losses. Simulation experiments show that simple protocols based on our resource allocation strategy can easily achieve results that are very close to the theoretical minimum obtained building optimized overlays on the network

    Improving P2P streaming in Wireless Community Networks

    Get PDF
    Wireless Community Networks (WCNs) are bottom-up broadband networks empowering people with their on-line communication means. Too often, however, services tailored for their characteristics are missing, with the consequence that they have worse performance than what they could. We present here an adaptation of an Open Source P2P live streaming platform that works efficiently, and with good application-level quality, over WCNs. WCNs links are normally symmetric (unlike standard ADSL access), and a WCN topology is local and normally flat (contrary to the global Internet), so that the P2P overlay used for video distribution can be adapted to the underlaying network characteristics. We exploit this observation to derive overlay building strategies that make use of cross-layer information to reduce the impact of the P2P streaming on the WCN while maintaining good application performance. We experiment with a real application in real WCN nodes, both in the Community-Lab provided by the CONFINE EU Project and within an emulation framework based on Mininet, where we can build larger topologies and interact more efficiently with the mesh underlay, which is unfortunately not accessible in Community-Lab. The results show that, with the overlay building strategies proposed, the P2P streaming applications can reduce the load on the WCN to about one half, also equalizing the load on links. At the same time the delivery rate and delay of video chunks are practically unaffected. (C) 2015 Elsevier B.V. All rights reserved

    Quasiprojectile breakup and isospin equilibration at Fermi energies: an indication of longer projectile-target contact times?

    Full text link
    An investigation of the quasiprojectile breakup channel in semiperipheral and peripheral collisions of 58,64^{58,64}Ni+58,64^{58,64}Ni at 32 and 52 MeV/nucleon is presented. Data have been acquired in the first experimental campaign of the INDRA-FAZIA apparatus in GANIL. The effect of isospin diffusion between projectile and target in the two asymmetric reactions has been highlighted by means of the isospin transport ratio technique, exploiting the neutron-to-proton ratio of the quasiprojectile reconstructed from the two breakup fragments. We found evidence that, for the same reaction centrality, a higher degree of relaxation of the initial isospin imbalance is achieved in the breakup channel with respect to the more populated binary output, possibly indicating the indirect selection of specific dynamical features. We have proposed an interpretation based on different average projectile-target contact times related to the two exit channels under investigation, with a longer interaction for the breakup channel. The time information has been extracted from AMD simulations of the studied systems coupled to GEMINI++: the model calculations support the hypothesis hereby presented

    Year in review in Intensive Care Medicine 2009: I. Pneumonia and infections, sepsis, outcome, acute renal failure and acid base, nutrition and glycaemic control

    Get PDF
    Journal ArticleReviewSCOPUS: re.jinfo:eu-repo/semantics/publishe

    Is prolonged infusion of piperacillin/tazobactam and meropenem in critically ill patients associated with improved pharmacokinetic/pharmacodynamic and patient outcomes? An observation from the Defining Antibiotic Levels in Intensive care unit patients (DALI) cohort

    Get PDF
    Objectives:We utilized the database of the Defining Antibiotic Levels in Intensive care unit patients (DALI) study to statistically compare the pharmacokinetic/pharmacodynamic and clinical outcomes between prolonged-infusion and intermittent-bolus dosing of piperacillin/tazobactam and meropenem in critically ill patients using inclusion criteria similar to those used in previous prospective studies.Methods: This was a post hoc analysis of a prospective, multicentre pharmacokinetic point-prevalence study (DALI), which recruited a large cohort of critically ill patients from 68 ICUs across 10 countries.Results: Of the 211 patients receiving piperacillin/tazobactam and meropenem in the DALI study, 182 met inclusion criteria. Overall, 89.0% (162/182) of patients achieved the most conservative target of 50% fT(> MIC) (time over which unbound or free drug concentration remains above the MIC). Decreasing creatinine clearance and the use of prolonged infusion significantly increased the PTA for most pharmacokinetic/pharmacodynamic targets. In the subgroup of patients who had respiratory infection, patients receiving beta-lactams via prolonged infusion demonstrated significantly better 30 day survival when compared with intermittent-bolus patients [86.2% (25/29) versus 56.7% (17/30); P=0.012]. Additionally, in patients with a SOFA score of >= 9, administration by prolonged infusion compared with intermittent-bolus dosing demonstrated significantly better clinical cure [73.3% (11/15) versus 35.0% (7/20); P=0.035] and survival rates [73.3% (11/15) versus 25.0% (5/20); P=0.025].Conclusions: Analysis of this large dataset has provided additional data on the niche benefits of administration of piperacillin/tazobactam and meropenem by prolonged infusion in critically ill patients, particularly for patients with respiratory infections

    Improving BGP convergence with Fed4FIRE+ experiments

    No full text
    The Border Gateway Protocol (BGP) is the single routing protocol that glues the Internet together. Its performance, especially the convergence speed after path changes, is key to global efficiency, also in light of the fact that the number of Autonomous Systems (ASes) and Subnets has reached a level that makes path changes a frequent event. This work presents a testbed-based experimental analysis of BGP convergence time under different hypothesis of Minimum Route Advertisement Interval (MRAI) setting and a proposal to improve it by setting MRAI based on the topological position of the ASes. MRAI is a timer that regulates the frequency of successive UPDATE messages sent by a BGPs router for a given route and destination. The work is based on the modifications of the BIRD BGP daemon and shows that it is possible to execute experiments on testbeds with topologies that have Internet-like characteristics scaling up to thousands of ASes
    corecore